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SUMMARY 

0 

A combined theoretical  and experimental  study i s  presented of 

resonant frequencies and associated mode shapes of truncated conical shells 

over a wide range of geometrical  and modal pa rame te r s ,  

Y 

The theoretical  

analysis incorporates  the effects of bending and membrane  rigidityp and of 

iner t ia  t e r m s  due to t ransverse  motion as well a s  meridional and c i reumfer -  

entia1 in-plane motion. The experimental resul.ts were  obtained for  four 

conical shell  modelsp with semi-ver tex angle 14( '> 3 0 L 9  45", and 60 '  L) The 

correlat ion of both resonant frequencies and mode shapes i s  very good, 

\ 

ii 
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SYMBOLS 

Aij, Bij  operators ,  element a t  ith row and jth column 
of opera tor  matr ix  A, B, respectively 

element a t  k th  row and mth column of the submatr ix  
.. i. 

Agm, BQ, [B2m], respectively 

a, b radius  of the major  and minor base, respectively 

a,, b,, cm, dm Four i e r  coefficients of mode functions 

G = Eh/( 1 - v  2 ), extensional modulus 

D = Eh3/ 12( l - v 2 ) ,  f l exura l  modulus 

dY = d/dx,  differential operator  

E Young I s modulus 

operator ,  element a t  ith row and Jth column of ope ra t c r  
ma t r ix  H* 

h thickness of shell 

kS = K ( 1 - v ) / 2 ,  shear  constant 

L = log ( s 2 /  SI) = log ( a / b ) ,  logarithmic completeness 
pa rame te r  

Ms, Me, Mse s t r e s s  couple resul tants  

NS Ne,  Nso s t r e s s  resultants , 

n 
k 

Qs, Q, 

c ir cumf e r entia1 wave numb e r 

t r ansve r se  shearing s t r e s s  resul tants  

S distance along meridian,  measu red  f rom apex 

t t ime 

u, v, w displacements of middle surface 

X = log (s2/  s), meridional coordinate 
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SYMBOLS (Cont'd) 

semivert ix  angle of cone 

angular displacements of no rma l  to  middle sur face  

2 2 = h / 12a dimensionless thickness  p a r a m e t e r  

c i rcumferent ia l  coordinate angle 

shea r  constant 

= m r / L  

P o i s s o n ' s  ratio 

m a s s  density 

= w a d p (  l - v 2 ) / E ,  d imensionless  frequency pa rame te r  

na tura l  frequency in r a d / s e c  
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INTRODUCTION 

The determination of resonant frequencies and the associated mode 

shapes for  thin-walledy shell  s t ructures  has  become an increasingly t' 

important problem in the design and analysis of complex space s t ruc tures ,  

However, the grea t  number and variety of modes in which these shells can 

vibrate  makes  the problem ra ther  complicated and involved. 

of relatively simple geometry,  such as the c i rcu lar  cylinder o r  sphere,  can 

Only fo r  shel ls  

the mode shapes be  given explicitly in t e r m s  of elementary o r  tabulated 

functions. In general ,  the curvature of the shell  va r i e s  f rom point to point, 

and the governing differential equations contain var iable  coefficients, a r e  non- 

separable  and do not have explicit solutions. 

In the present  paper the truncated conical shel l  i s  t reated,  The 

c i r cu la r  cone has  probably the simplest  geometry of all the rotationally 

symmetr ic  shells with nonconstant curvature  and has  obvious importance 

in space s t ruc tures  and other  applications, The l i t e ra ture  on conical shel ls  

has  been reviewed in [ l]"' and [ 21 and will not be  repeated he re ,  It has  been 

r 

pointed out in [ 21 that the alialytical techniques employed for  solving f r e e  

vibrations of conical shells have been l imited to e i ther  energy methods 

[ 3 - 91 or  numerical  integration procedures  [ 10 - 131 In many cases ,  

the assumptions used have restr ic ted the solution to near ly  cylindrical shells 

' N u m b e r s  in brackets  re fer  to references cited a t  the end of this  report .  
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[ 5, 6, and 91 

used for  the mode shapes in Rayleigh-Ritz methods, the resulting frequency 

wil l  not acquire  satisfactory accuracy unless  a sufficient number of t e r m s  a r e  

retained in these expansions, 

problem is the fact  that a la rge  number of widely different modes may 

respond to  a given excitation, Therefore ,  it  would appear  essent ia l  to 

identify all of the resonances within the frequency spectrum of in te res t  in 

o r d e r  to avoid, if possible, l a rge  deflections o r  s t r e s s e s .  Above the 

minimum resonant frequency, the density of resonance for  thin shel ls  i s  

generally very high, so  that ra ther  accurate  analysis is needed if they a r e  to  

be avoided, 

Although both polynomial and trigonometric expansions can be 

t 

A distressing aspect  of the shel l  vibration 

In [ 21, Hu has  presented a method of solution fo r  the truncated cone 

with homogeneous boundary conditions which has  the grea t  advantage that it 

re ta ins  the mathematical  features  of the vibration problem in that the 

natural  frequencies and mode functions a r e  obtained a s  the eigenvalues and 

associated eigenvectors of a coefficient matr ix .  

genera l  formulation of the problem with numerical  resu l t s  presented for  

membrane  solutions of axisymmetr ic  modes only, In this  paper ,  solutions 

a r e  obtained f o r  nonsymmetric t ransverse  modes,  including both the membrane  

and bending stiffness.  

modes1I o r  "breathing modes 

and prac t ica l  importance than the many other modes possible,  

Reference [ 21 presents  the 

These modes, r e f e r r e d  to  by some authors  a s  "bell 

1 '  generally have m o r e  physical significance 

In general ,  
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these modes possess  the following charac te r i s t ic  features:  (1)  the t r ansve r se  

motion predominates;  thus, the vibration is usually visible and audible, 

( 2 )  the resonant frequencies form the lowest group in the ent i re  frequency 

spectrum, and (3)  the response of normal  displacement to external d i s tur -  

bance i s  usually l a r g e r  than the response in other modes; therefore,  f r o m  

the s t ruc tura l  view-point, resonance of t r ansve r se  modes should be c a r e -  

fully avoided. 

t 

In o rde r  to verify the degree of validity of the theoretical  predictions,  

experiments were  performed on four different shell  models having widely 

different cone angle. 

and mode shapes for the shells freely-supported a t  both edges, 

Correlat ion is presented for  both resonant frequencies 

V 
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ANALYSIS 

t 

Matrix F o r m  of Governing Differential Equations 

A set  of differential equations in t e r m s  of displacements governing 

the f r ee  vibrations of truncated conical shells has  been derived in [ 2 ]  :$. 

These equations incorporate the effects of both bending and membrane  

s t r e s s e s ,  and retain iner t ia  t e r m s  for both the t r ansve r se  motion and the 

in-plane, meridional and circumferential  motion. The t e r m s  corresponding 

to ro ta ry  iner t ia  and t r ansve r se  shear deformation a r e  included for the 

meridional direction only, analogous t e r m s  for the circumferential  

direction being neglected, A matr ix  equation for the displacement vector 

U". = {un vn wn psn}is obtained i n  the form 
.?, 

11 1 2 H:k u:;: - - R u ::: 

where H" i s  a (4 X 4)  operator  matr ix  containing the differential operator ,  

and R i s  the dimensionless frequency parameter  

R = wadp(1 - V ~ ) / E  ( 2 )  

The operators  H"ij, i, j ,  = 1, 2, 3 ,  4, of the ma t r ix  H': a r e  given in 

Appendix I. 

defined by the following separation process :  

The dimensionless mode functions un, vn, wn and Psn a r e  

:::See particularly pages 3-12, 17-22. 
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equations with variable coefficients. The independent var iab 

ei ther  the meridional distance s measured from the apex, o r  

v = avll cos (ne t eo) coswt 

The shell geometry and coordinate sys tem is defined i n  F igure  1, 

The four equations in (1 )  a r e  coupled second-order differential 

e can be 

the t ransformed 

var iable ,  

x = log ( >) 
which i s  dimensionless and will be used throughout this analysis.  

evident that the mode functions a re  continuous, smooth functions of x in 

the interval 0 4  x,<L where 

It is  

L = log($) 

(4)  

It might be remarked  that i f i -he  semi-ver tex angle a = 0 (cylindrical  she l l s ) ,  

the mode functions a r e  known to be expressible in tr igonometric and 

exponential functions of s; while if a = n / 2  (annular plates) ,  the t r ansve r se  

vibration i s  uncoupled and the mode function wn i s  expressible  in Bessel  

functions of s. 

expressed  in  t e r m s  of any known tabulated functions and must  be solved by 

In the general case,  however, the mode functions cannot be 

some numerical  p rocess .  In the present  analysis they a r e  expanded into 

F o u r i e r  s e r i e s  with the coefficeints determined by a Galerkin procedure.  
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Calculation of Frequencie s and Mode s 

The boundary conditions f o r  shell problems a r e  always hard  to 

p re sc r ibe ,  especially to represent  experimental  o r  actual conditions. Two 

different end conditions will be discussed h e r e ,  both being simply supported 

with reference to the t r ansve r se  displacement but differing with regard  to 

the in-plane meridional res t ra in t .  In the f i r s t  ca se  the displacement in the 

meridional direction, u, is taken as  zero at the boundaries,  and then is  

relaxed in the second case.  In both cases ,  the ci rcumferent ia l  and t r ansve r se  

displacements as  well a s  the moment in  the meridional  direction a r e  assumed 

zero.  The f i r s t  condition will be re fer red  to a s  simply-supported and the 

second freely-supported.  

Simply- supported edges with meridional constraint .  The boundary 

conditions a r e ,  un - - vn - - wn = M,, = 0 ,  at x = 0, L. The las t  condition, 

Msn = 0 ,  i s  equivalent to 

= 0, at x = 0 ,  L. sn  
dp sn 

dx 
- -  ( 7 )  

Therefore ,  the following truncated Four i e r  expansions will satisfy all  the 

boundary conditions t e r m  by t e r m  

mTx alii sin- 
L 

u ,=  f1  
m = l  

m ITX vn = bTll sin- 
L 

M 2  

m = l  
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M7 
w n = C  clrl s in  - m TTTX 

L m = l  

Y 

where  M l p . .  . , M4 a r e  properly chosen in tegers .  F o r  simplicity,  we will  

use a new variable  

m=l 

Then ( 1 )  can be t ransformed to  

where  

E 
. .  
1 3 1  = 

(8d : )  

Note that the ope ra to r s  H'"iJ and e v x  a r e  in  general  not commuta t ive . :~  

We as sume  that  the Four ie r  expansions (8) a r e  t e rmwise  differentiable 

Substitution of (8)  into ( 9 )  and application of the Galerkin procedure  twice. 

yields the following ma t r ix  equation governing the F o u r i e r  coefficients 

a ' s ,  b ' s ,  c ' s ,  and d 's :  

+Refe r  to [ 21 , pp. 12 -17  
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Y 

, 

whe r e  

0 

sin - ksrx ( Ai4 cos F) dx 
Ai4 k m  = L '/" L L 

0 

L 
ksrx 4 '  cos- (A J sL L 

A4j = - 
km L 

0 

ksrx 
c o s - ( A44 c o s ) dx 

A44 = - 
km L L L 

0 

i = l ,  2, 3 

j = 1 ,  2 ,  3 

mnx Note that whenever m = 0,  cos-- should be replaced by 1 / 2 ,  
L 

sixteen algebraic  formulas  which generate the submatr ices  [Aij ] i ,  J = 

1 ,  The eigenvalues and eigenvectors of 

The 

km 

- .  , 4, a r e  given in Appendix 11. 

the coefficient ma t r ix ,  which can be readily calculated on a digital computer ,  

give the na tura l  f requencies  and associated mode functions of the s imply-  

supported conical shell .  
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Free ly  supported edges without meridional constraint .  F r o m  

numerical  resul ts  computed by applying the ma t r ix  equation (1 l ) ,  it was  

found that the above formulation yielded higher frequencies than those 

measured  in the experiments ,  
t 

A c loser  examination of the edge supports 

used in the experiments indicated that little constraint  was provided to 

the meridional,  in-plane motion, Therefore ,  the meridional constraint ,  

u = 0 ,  at  x = 0 ,  L, was released to obtain a bet ter  description of the n 

experimental  boundary condition and, at  the same t ime,  i l lustrate  the 

relative influence of the longitudinal constraint ,  

Replacing u, = 0 by Nsn  = 0,  o r  equivalently 

dun 
dx vun = 0,  at  x, = 0 ,  L - -  

the s e r i e s  (8a)  should be repl.aced by 

In addition to using (Sd ' )?  define a new variable 

Then (1 )  can be t ransformed to  
t 

( 8 a ' )  



where 

[ B i j ]  = 

Substituting (8a':, b, c ,  and d ' )  into (13) and applying the Galerkin 

procedure,  we can readily obtain a mat r ix  equation s imi la r  to (11) 

where 

mnxl L 

L 0 L ,=,I L 

- 2 krrx - - jL c o s  1_ [B'J sin --- dx 
L L 

0 

c o s  -- dx 

sin - ksrx [BiJ s in  ET?!] dx 
L L L 

0 

i ,  j = 2 ,  3 

m srx 
L 

As  mentioned before,  whenever m = 0 

The sixteen algebraic formulas which generate the submatr ices  [BiJ ] 
i j = 1,  o ,  4,  a r e  given in Appendix XII, 

c o s  -- should be replaced by 1 / 2 ,  

km 
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Numerical Procedure  

. 

It can be seen from the coefficient mat r ices  [Ai j  ] o r  [BiJ ] 
km k m  

that the frequency parameter  Q and the mode functions depend on six 

pa r  amete r s: 

Foisson ' s  ra t io  v i s  taken a s  0 . 3  in all calculations. The f i r s t  th ree  a r e  

geometric pa rame te r s  and have prescr ibed values for the four models 

tes ted.  These a r e  given in  Table 1 

TABLE 1.  

a (in. ) -- Model No.  a s 2 /  s1 h / a  

1 14 .2"  2.  23 0. 00166 6. 07 

2 30 .2"  2 , 2 7  0 .001  27 7 .95  

3 45.1" 2 .  25 0,001 12 8. 96 

4 60.5" 2. 2 5  0 .001  01 1 0 , o o  

The circumferent ia l  wave number n was assigned selected integer values 

ranging f rom 3 to  28, to cover all modes being excited in the experiments ,  

The number of t e r m s  M1, ~ ~ ~ Mq9 retained in the Four i e r  s e r i e s  i s  determined 

by the accuracy requirement.  When n i s  not too la rge ,  a typical set  i s  

Mi  = 4,  M2 = 4, M3 = 5 ,  M4 = 6,  which yields a (21 X 21) coefficient 

ma t r ix  PiJ 1. This mat r ix  i s  then inverted and the two la rges t  eigen- 
km 

values a r e  calculated by iteration, giving the two lowest natural  
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frequencies and associated modes, m = 1, 2 .  F o r  very  la rge  values 

of n ( say  24-28) ,  it  was found that a ( 2 8  X 2 8 )  mat r ix  was needed to 

predict  the frequencies with reasonable accuracy. No attempt was made  

to calculate the higher modes with g rea t e r  accuracy because of the l imited 

available computer storage capacity. 
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EXPERIMENTAL APPARATUS AND PROCEDURE 

In order  to  verify the accuracy of the numerical  procedures  out- 

lined in the preceding section, experiments were  run on four shell  models 

having the geometr ies  described in Table 1 .  The experiments were  s imi -  

la r  to those descr ibed in [ 131 for cylindrical shel ls .  

of the experiments a r e  that the steel shel ls  a r e  dr iven by a pulsed mag-  

netic field, and the t r ansve r se  displacement i s  measured  by a noncontacting 

probe. 

adds additional m a s s  or  stiffness to  the thin shell .  

verse  displacement mode shape allows d i rec t  correlat ion with the eigen- 

vectors  as well a s  the eigenvalues calculated f rom the appropriate coeffi- 

cient ma t r i ces .  

The essent ia l  fea tures  

In this  manner,  neither the excitation nor the measuring sys tem 

Mapping of the t r a n s -  

The shell models were  formed f rom 0.010-inch thick rolled s tee l  

shim stock. The cones were formed f rom the flat sheet with one welded 

seam along a generator of the cone. 

butt-joint so  that a negligible discontinuity was formed in the shel l .  

This s eam was arc-welded with a 

A schematic  of the experimental apparatus and instrumentation i s  

The shell  shown in F igure  2,and a general  view of the setup in Figure 3. 

models  a r e  supported f r o m  a mandrel of a vertically mounted lathe bed. 

The boundary support shown in Figure 2 i s  that used to  simulate the freely 

supported edge condition. The right-angle groove in the circular  plate 
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supporting the lower end i s  machined to  a close tolerance fit with the smal l  

radius b of the shell .  The upper c i rcular  plate i s  positioned with a slight 

axial load to give a line support around the large radius  a of the shell .  

only in-plane res t ra in t  is the slight friction between the shell  and the support 

The 

Excitation to the shells was produced by a pulsed magnetic field f rom 

two small  electromagnets located at opposite ends of a diameter of the shell .  

The frequency of the excitation was controlled by an oscil lator driving the 

electromagnets through a power amplifier. In order  to  optimize the excita- 

tion of each mode, a phase control i s  added so  that the two electromagnets  

can be operated either in-phase or out-of-phase depending upon the c i r cum-  

fe ren t ia l  wave number n being either even or  odd. The position of the 

excitation along a generator  ( s  direction) of the shell  i s  a l so  adjustable s o  

that various axial  modes may be optimally excited. 

The t r ansve r se  displacement w is mapped with an inductance type 

displacement probe, mounted on a long lead screw s o  that it can t r a v e r s e  

the shel l  in the s direction. The entire shell  and excitation system may  be 

rotated 360" on the central  mandrel allowing a circumferent ia l  mode shape 

plot also.  

placement probe with respect  t o  the shell  is given by a ro ta ry  potentiometer 

For  d i rec t  plotting of the mode shapes, the position of the d i s -  

on the mandrel  and a res i s tance  slide wire  on the lead screw assembly.  

The output signal f rom the displacement detector is  conditioned through a 

tracking fi l ter ,  tuned to  the excitation frequency. The fi l tered output signal 
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can be recorded on either an oscilloscope, frequency counter, o r  x-y pen 

r eco rde r  fo r  mode shape plots. 

Resonance is determined as  the frequency at which maximum t r a n s -  

ve r se  amplitude response is obtained. 

upon the sharpness  of the amplitude-frequency response curves which, for 

low damping s t ruc tures  such a s  the shells tested,  i s  sufficient to  distinguish 

resonances separated by only a few cycles pe r  second. 

r ead  f rom an electronic frequency counter. Modes may be identified most  

easily by observing the phase relationship between the driving signal f rom 

the oscil lator and the response signal f rom the displacement detector .  

Upon crossing a nodal line the phase shifts 180" and i s  easily detected by 

the rotation of the Lissajous figure on the x-y oscilloscope. Mode shapes 

can be plotted direct ly  on an  x-y pen recorder ,  with the rectified displace- 

ment  amplitude on the y axis and the circumferent ia l  or meridional position 

on the x axis .  

The accuracy of this method depends 

Frequencies a r e  
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EXPERIMENTAL RESULTS AND CORRELATION 

Re sonant Frequencies  

The resonant frequencies for the freely-supported cones a r e  p r e -  

sented graphically in Figures  4, 5, 6, and 7 for the four shell  models 

given in Table 1. 

cone angle a ;  however, the thickness parameter  h / a  i s  a l so  varied to  some 

extent in order  t o  maintain models of reasonable dimensions. 

dimensional frequency parameter  S2 i s  plotted against the circumferential  

wave number n. The theoretical  natural  f requencies  a r e  indicated by the 

solid, continuous curves,  although it should be noted that n i s  a d i scre te  

parameter  having only integer values. The theoretical  and experimental  

f requencies  a r e  a l so  given in Table 2 .  

The p r imary  geometrical  parameter  being varied is the 

The non- 

The correlation between theory and experiment i s  seen to  be quite 

good, particularly for the lowest axial  mode, m = 1. The divergence 

between theory and experiment that does exist  has  two p r i m a r y  causes;  

namely, satisfaction of the assumed boundary conditions, and the finite 

truncation of the Four ie r  expansions for  the mode functions. 

mat ica l  and experimental  boundary conditions have been descr ibed in 

preceding paragraphs.  

placements,  u and v. Fo r  the 45" cone (F igu re  6),two se ts  of theoretical  

curves  a r e  calculated and plotted, one being simply-supported and the 

The mathe-  

A problem a r i s e s  in prescr ibing the in-plane d is -  
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0 .236  

~- 

4 
5 
6 
7 
8 
9 

10 
11 
12 
1 3  
1 4  
15  
16 
17  

0 .  387 
0 . 2 5 8  

0 , 1 4 1  

0 , 1 1 0  

0 .  127 

0 . 1 6 4  

0 .209  

0 .260  

0, 319 

0 .  348 

0 .  180 
0 ,  138 
0 ,  118 
0 ,  108 
0 . 1 1 4  
0 .  124 
0 , 1 3 5  
0 .  144 
0 . 1 6 0  
0 .  174 
0 .  189 
0 , 2 0 3  
0 . 2 2 3  
0 . 2 4 1  

Shel l  Model  N o .  2 ( a  = 3 0 . 2 " )  

0 .236  
0 .  157 

0 .  130 0 .122  
0 . 0 9 8  

0 , 0 9 5  0 090 
0 . 0 8 8  

0 . 0 9 6  0 .092  
0 . 1 0 1  
0 .  109 
0 .  117 

0 . 1 3 3  0 .  130 
0 .  141 

0 .  155 O., 153 
0 .  167 

0 .360  

0 .  189 
0 . 2 0 6  0 . 2 0 0  

0 , 2 0 9  
0 .230  0 . 2 2 4  

0 . 2 3 7  

3 
Exp e r 

0 .  177 
0 .  166 
0 .  169 
0 ,  179 
0 ,  187 
0 .  197 
0 . 2 1 3  
0 . 2 2 6  
0 . 2 4 6  
0 .262  

0 .260  
0 . 2 6 8  
0 . 2 7 7  
0 . 2 9 0  
0 299 

4 
Exper 

0 . 2 1 6  

0 . 2 3 1  

0 . 2 5 4  

0 . 3 5 5  
0 , 3 6 2  
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TABLE 2 THEORETICAL AND EXPERIMENTAL NATURAL 
FREQUENCIES, C, FOR CONICAL SHELLS TESTED (Cont 'd)  
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T A B L E  2. THEORETICAL AND E X P E R I M E N T A L  NATURAL 
FREQUENCIES,  Q, FOR CCiYICAL SHELLS T E S T E D  ( C o n t ' d )  

- x 
2 3  
24  
25 
26 
27 
28  
29 

6 
7 
8 
9 

10 
11 
12 
1 3  
14 
15 
16 
17 
1 8  
19 
20 
2 1  
22 
2 3  
2 4  
25  
26 
27  
2 8  
29  

The0  Exper E x p e r  

Shel l  Model  No.  3 ( a  = 4 5 ,  1 " )  (Con t ' d )  

0 . 2 4 6  
0 . 2 7 8  0 . 2 6 1  

0 . 2 7 8  
0 .290  
0 .  307 
0 . 3 2 3  
0 . 3 4 1  

0 ,  332 
0 , 3 7 8  0 , 3 4 8  

0 , 3 5 8  

S h e l l  Model  N o ,  4 ( a  = 6 0 . 5 " )  

0 ,  179 

0 .  126 

0 ,  109 

o 0 1 1 o  

0 .  123 

0 .  150 

0 . 2 0 1  

0 , 2 6 7  

0 , 3 4 0  

0 ,  161 
0 ,  134 
0 , 1 1 9  
0 .109  
0 .  104 
0 ,  106 
0 .  108 
0 . 1 1 2  
0 . 1 2 1  
0 ,  128 

0 , 1 4 6  
0 ,  158 
0 .  170 
0 .  186 
0 , 2 0 0  
0 . 2 1 4  
0 . 2 2 9  
0 , 2 4 5  
0 , 2 6 5  
0 . 2 8 2  
0 ,  302 
0 ,  324 
0 , 3 4 2  

0 ,  392 

0 , 3 0 6  

0 249 

0 , 2 2 1  

0 , 2 1 1  

0 , 2 3 7  

0 , 2 9 2  

0 , 3 7 7  

0 , 4 5 5  

0 . 2 5 8  
0 , 2 2 7  

0 , 1 8 8  
0 ,  193 
0 .  192 
0 , 2 0 2  
0 , 2 1 1  
0 , 2 2 1  
0 . 2 3 3  
0 , 2 4 4  
0 , 2 5 9  
0 . 2 7 7  
0 . 2 9 6  
0 , 3 1 4  

0 , 3 5 6  

0 , 2 8 5  
0 . 2 9 9  

0 . 3 3 5  

0 .  366 

- 
4 

~ 

Exper 
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other freely-supported.  These two differ only with respect  to  the m e r i -  

dional res t ra in t  on the displacement u a s  previously discussed.  The effect 

of relaxing this  in-plane constraint i s  quite pronounced, with the f ree ly-  

supported condition giving obviously bet ter  agreement with experiment.  It 

i s  this boundary condition that i s  used for correlation with the other shel l  

models.  Although, the effect of the circumferent ia l  res t ra in t  at the boundary 

is expected to  be l e s s  significant, for low values of n it may  a l so  have some 

influence, since, for these modes, the spacing between the nodal points on 

the boundary is grea te r ,  thereby allowing greater  circumferential  d i s  - 

placements.  

for the theoretical  frequencies being high at  low values of n. 

The imposed circumferential  res t ra in t  may partially account 

Truncation of the s e r i e s  expressions for the mode shapes i s  a l so  

a se r ious  source of e r r o r ,  particularly at la rge  values of n where the mode 

shapes become highly skewed toward the large end of the cone, a s  will be 

shown la te r .  Increasing the number of t e r m s  in the s e r i e s  was always 

found to  improve the accuracy.  A s  mentioned ear l ie r ,  some judgement i s  

required to  select  the optimum relative number of t e r m s  in each s e r i e s  to  

obtain maximum accuracy for a given s ize  mat r ix .  

change a s  the pa rame te r s  of the problem a r e  varied, thereby affecting the 

This selection may  

relat ive influence of the respective displacement or s t r e s s  components. 

The frequency plots for the supported conical shells a r e  character ized 

by having a minimum frequency €or each axial mode number m, occurring 
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at some value of n. 

l a r  cylindrical shell. 

This i s  similar to  the behavior of the supported c i rcu-  

The value of n at which the minimum frequency occurs  

i s  dependent upon the other parameters  of the shell, a, s 2 / s 1 ,  h / a  and pi. 

Fo r  low values of n, the frequency curve turns  sharply upward because of 

the increasing influence of the membrane stiffness in this region. F o r  

la rge  n ( shor t  wavelength), the stiffness is contributed predominantly by 

the bending stiffness of the shell. 

We might point out again a fact which i s  obvious f rom examining 

the frequency plots, that the density of resonant frequencies i s  very high. 

This often r e su l t s  in difficulty in experimental  separation of some neigh- 

boring modes.  Also, the amplitude response at  resonance does not appear 

to  have any uniform progression with frequency or mode number.  This 

last factor must  be tempered by consideration of the distribution and posi-  

tion of the forcing function a s  wel l  a s  possible nonuniform damping of the 

various modes 

It is difficult to make general  s ta tements  about the frequency spec-  

t r u m  for f reely supported conical shells,  since i t  i s  influenced by all six 

independent pa rame te r s  in (16).  In order  t o  get some picture  of the influence 

of cone angle a onthe frequencyparameter ,  the theoretical  curves  inF igure  b 

were  constructed.  At the extreme angles of 0"  and 9 0 ° ,  i? i nc reases  r eg -  

ular ly  with n, while at  intermediate angles the relationships between 52 and 

n is  m o r e  complicated. For  the par t icular  pa rame te r s  chosen for this 
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plot ( . / a  = 0.01, s 2 / s 1  = 2.25, v = 0 . 3 0 ) ,  the minimum frequency always 

occurs  for n < 5. Also,the stiffest shel l  in t r ansve r se  vibration appears  

to  be in the neighborhood of a = 5 0 " .  

Since fo r  smal l  values of a, the conical shel ls  should behave like 

circular  cylindrical shells, it would be interesting to  compare F igure  8 

with the similar resu l t s  given by Arnold and Warburton for thin-wall 

cylinders (F ig .  2, Ref. 14). It may be noted that the frequency spectrum 

of cones near  a = 0"  in Figure 8 i s  strikingly analogous to  that of cylinders 

near  X = m.rra/l = 0 in Figure 2, Ref. 14, where .! i s  the total length of the 

cylinder. It is easy to  show that, for  smal l  a, the wavelength factor A 

is proportional to cone angle a :  

In the case  under consideration, s l / s 2  = 0.444, therefore ,  A = 5 . 6 5 a  

( a  in radian).  

represent  the limiting case  of a n  infinite cylinder with h / a  = 0.010.  

The values of S2 at a = 0 and X = 0 agree  closely, since both 

How- 

ever ,  the frequency curves for  the cone ascend fas te r  than corresponding 

curves  for  the cylinder. 

of the increased  s t i f fness  of the conical shell  even i f  i t  i s  only slightly 

This is t o  be expected a s  an apparent consequence 

tapered  , 

A decrease  in the thickness parameter  h / a  generally lowers  the 

resonant frequencies because of decreased  stiffness,  and shifts the mini-  

m u m  frequency to  la rger  values of n, which indicates a change of re la t ive 
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influence of bending s t r e s s e s  and membrane  s t r e s s e s .  F o r  h / a  on the 

o rde r  of 0 . 0 0 1  a s  for the shells tested, the minimum frequency occurs  

at n 11 while in the example of Figure 8, h / a  = .O 1, the minimum fre- ,  

quency occurs  at  n 6  5. 

i nc reases  a s  ( h / a ) 3  while the membrane stiffness i s  proportional only to  

This i s  due to  the fact  that bending stiffness 

( h / a ) .  

Mode Shapes 

Both experimental  and theoretical  normalized axial  mode shapes 

a r e  plotted in F igures  9 through 13 for various modes and all four shell  

models .  The theoret ical  modes a r e  in most  ca ses  obtained with a 5 to  7 

t e r m  truncation of the Four ie r  se r ies  for the normal  displacement w. 

In general, good agreement  is  obtained. The circumferent ia l  mode shapes 

a r e ,  of course,  proportional to sin ne.  The nodal pat tern for a l l  the modes 

observed always consisted of parallel  c i rc les  and equispaced mer id ians  a s  

predicted by the theory 

The most  striking feature of the axial mode shape is i t s  strong 

dependence on the circumferential  wave number n for a given shell  geom- 

e t ry .  This is i l lustrated in Figures 9,  10, 11, and 13 for  m = 1 and in 

F igu res  9 and 12  for m = 2 .  In each case,  the position of maximum d i s -  

placement o r  antinode 

s = s2, with increasing circumferential  wave number n.  F o r  low values 

of n and in the neighborhood of the minimum frequency, the displacement 

shifts toward the la rge  diameter  of the shell, 
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. 

i s  relatively symmetr ic  and therefore  can be descr ibed with a fewer number 

of t e r m s  in the Four ie r  s e r i e s .  

ment i s  obtained for the resonant f requencies .  

displacement becomes highly skewed toward the l a rge  end of the cone, 

with little t r ansve r se  motion occurring at  the smal l  end. 

achieve good agreement in this region, for either mode shape or resonant 

frequency, will require  retaining additional t e r m s  in the s e r i e s B  not only 

f o r  the normal  displacement w,but a l so  for the other displacement or  

s t r e s s  components. Physically, the suppression of normal  displacement 

near  the smal l  end of the cone at la rge  values of n i s  due to  high stiffness 

and the short  distance between consecutive nodal mer id ians  in this region, 

i. e . ,  t he re  a r e  2n points of z e r o  normal  displacement around a c i rcum-  

f e rence .  The displacements between these  nodal l ines a r e  therefore  

necessar i ly  smal le r  near  the minor end. 

this  region, however, a r e  not necessar i ly  smal l .  

This i s  the region where the best ag ree -  

At la rge  values of n, the 

Obviously, to  

The curvatures  and s t r e s s e s  in 

The geometry of the shell a l so  has  an effect on the normalized 

mode shapes.  F o r  comparison, the same modes n = 8, m = 1, is plotted 

in F igures  9 ,  It is  interesting t o  

note that for  this mode the theoretical  mode shape for  a = 14.2" i s  skewed 

toward the l a rge  end, 

45. l o ,  60 .  5", the theoret ical  mode shapes a r e  skewed toward the smal l  

end, s = S I .  This s eems  dependent on whether the circumferent ia l  wave 

number n = 8 being la rger  or smaller  than the wave number at  which the 

10, l l a  and 13 f o r  the four shel l  models .  

s = s2, while for the other t h ree  shells,  a = 3 0 ,  2 " ,  
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minimum resonant frequency occurs, and therefore  whether the bending 

or  membrane  s t r e s s e s  a r e  m o r e  influential. The experimental  resu l t s  for 

this  mode a r e  not a s  consistent on this  point, par t icular ly  for a = 6 0 . 5 " .  

The general  observation appears  to be valid, however. F o r  instance, in 

Figure 9 for a = 1 4 . 2 " ,  the mode n = 8, m = 1 i s  skewed towards s = s2 ,  

and the mode n = 8, m = 2 i s  skewed towards s = S I .  

the bending portion of the Q vs n curve y,vhil.: the la t ter  i s  at  the minimum of 

the curve and m o r e  strongly affected by the membrane  effects.  

The fo rmer  i s  on 

A few m o r e  comments a r e  appropriate with r ega rd  to  the theoret i -  

cal  and experimental  mode shapes. 

fo r  some of the theoret ical  mode shapes for m = 1 a r e  a resul t  of the 

l imited number of t e r m s  in the se r i e s  expression for w and should not 

imply the existence of an additional nodal c i rc le .  

mental  displacement curve i s  generally shifted to  the right with respect  

to  the theoretical  curve, perhaps due to the experimental  boundary condi- 

tion which held the smal l  end of the cone m o r e  tightly than the la rge  end. 

The negative deflections indicated 

In addition, the experi-  
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CONCLUSIONS 

It is felt that the following conclusions may be justifiably made f rom 

work presented.  

1. The analytical procedure used is adequate to  predict  the resonant 

f requencies  and mode shapes for  t r ansve r se  vibration of truncated conical 

shel ls  over a wide range in the geometrical, ma te r i a l  and modal p a r a m e t e r s ,  

The numerical  procedure i s  particularly efficient for  shel ls  with homogen- 

eous boundary conditions, where, a s  in the example presented, each sub- 

ma t r ix  of the coefficient ma t r ix  a r e  generated by a single c lose-form 

algebraic  expression.  

conditions, much of the computational efficiency of the method may  be lost 

because a r a the r  complicated form of s e r i e s  expansion has  to  be employed 

to  represent  the mode functions, and an appropriate t ransformation [such 

a s  the one which t ransforms ( 1 )  into (9)  or (13) used herein]  must  be applied. 

While still  applicable to  nonhomogeneous boundary 

2.  The accuracy of the analytical resu l t s  is  strongly dependent 

upon the degree of satisfaction of the boundary conditions and the number 

of t e r m s  retained in the s e r i e s  expansion of each of the mode functions, 

the la t ter  being particularly significant for  the higher modes.  

3 .  The order  of occurrence of the resonant frequencies in t e r m s  

of the modal pa rame te r s  m and n is strongly dependent on the geometry of 

t he  shell .  
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4. F o r  the shell  supported at both edges, a minimum resonant 

frequency for each m value occurs, which separa tes  that branch of the 

frequency spectrum predominantly associated with membrane  effects f rom 

that associated with bending stiffness. 

5. The modal shape in the meridional  direction is strongly depen- 

dent on the circumferential  wave number n, with the predominant t r a n s -  

verse  motion shifting toward the l a rge r  end of the cone a s  n increases .  
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FIGURE 1,  SHELL GEOMETRY AND COORDINATE SYSTEM 
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FIGURE 3 .  PHOTOGRAPH O F  EXPERIMENTAL S E T U P  
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APPENDIX I 

The elements of the operator m a t r i x  H" 

H"'ll - - .2x [ -sin's ( ~ e r  2 - 1) t - 1-v r 21 
2 

::: 1 2 
2x [L++ "3 H = -n  sin a e 

H"'13 = s i n a  c o s a  e2x ( v d t  1) 

H::: 14 

2 

= o  

"::2 1 = n s i n a  e 2x [ly-"] 
2 

'I ::: 2 2 
H = e  2x [ - + sin2a ( ~ 2 -  1) t n 

- - - n c o s a  e2x + E n c o s a  e 4x [ I - v s i n z a  ( ~ 2 t 2 ~ ) - n  21 :;: 2 3 
H 

2 

H'"24 = e n  s ina  c o s a  e3x [ ~ d -  %] 
H"31 = - s ina  c o s a  eZx [ ~3 - 11 

H = - n c o s a  e 2x '$3 2 

"'33 - - e2x [ - k s  s i n 2 a d 2  t c o s 2 a ]  

:$34 
= k s i n a  e X ( & - l )  - En2 s i n a  e 

2 S 
H 

H"4 = o  
$4 2 

H = o  

H':'4 = - (kS /E)  s in  

2 '-' n i l  t (kSjE) = e2x [ - sin a ( ~ 2 - 1 )  t- 2 
:::44 

H 

where  J= d/dx i s  the differential opera tor .  
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APPENDIX I1 

Let  k and m be positive integers o r  zero,  and y be any positive r ea l  

number,  Define 

krx  mrrx s in  - dx eYx sin - 
km L 0 L L 

2 ]  [ ( -  l )k+m e y ~  - 13 Y L  YL 
= [ y 2 L 2 t ( k - m ) ' n 2  Y 2 2  L +(k tm) ' ,  

dx mTx knx eYX sin - c o s  - 
km L L 

[(- l ) k + m e y ~ -  11 
(k-m).: 

4- 
= - [ . 2  7 L + ( k - m )  2 2  sy y 2 2  L t ( k f m )  IT 

k rx  m r x  
L L 

cos- dx km 

When y = 0, and k = m ,  the above formulas  a r e  indeterminate,  

can be easily evaluated a s  following 

The integrals  

mrr Denote 1J. = -  

. .  
The coefficients AIJ for simply supported edges with axial  constraint  a r e :  km 
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m = l  - M 1  
2 

A'' = [sin 'a (p. 2 t 1 )  +-- 
km 

Akm 12 = - n  s i n a  [+ p. Q ~ Z  + % ~kg] 
Akm 

A i &  = 0 

m = l  - M 2  

13 = s i n a  C O S Q  [vpQkm ( 2 )  t m = l  - M 3  

m=O " M4 

m = l  - M l  
2 

A i &  = n s i n a  

Akm L 

A 2 3  = - n c o s a P k m  ( 2 )  - E n c o s a  

2 2  = [ k s i n ' a  (p. 2 61) t , L ]  P L ~  m = l  " M2 

s i n z a t n z )  pkm ( 4 )  
km 

m = l  - M 3  

2 
Ako 24 = - En s i n a  c o s a  ) QEv) (m=O) 

2 ( 3 t v )  24 l - t v  ( 3 t v )  + 3-2v-v  
- Q k r n  ] [T p.Pkm L 

Akm = - En s i n a  c o s a  

m = l  " M 4  

m = l  - M 1  

m = l  M2 

m = l  - M3 

(m=O) 
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Akm = o  

4 2  Akm = 0 1 m = l  - M 1  

m = l  - M 2  

1 A43 = - (kS /E)  p s i n a  R L k v )  Sn  2 s i n a  
k m  m k  

a ( l  - v 2 )  t - 1 - w  n2] 1 R ( ' )  .t ( k s / 2 t ) R P 2  
ko 2 2 k o  

(m=O) 

44 - [  sin 2 a ( p 2  t 1 - v 2 ) t -n ' - ' 2 ] R k %  
2 *krn - 

J -t 2 v p  sin's Q( -t (ks/  E )  R(O) m = l  - M 4  
m k  k m  
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APPENDIX 111 
1 

> i j  The coefficients Bkm for  freely supported edges without meridional  

con s t  ra int  a r e  

( m  =0) a ( 1 - v  t -  'iv n2] - R k o  1 ( 2 )  

B;: = [sin 2 2  a ( p  + I - v  2 t- l - v  n2] R ~ A  -2vps in  2 a Qmk ( 2 )  

2 

2 

m = l  - M I  

= - n s i n a  m = l  - M2 
12 

M3 m = l  I 

Bk: = 0 m=O - M4 

(m=O) 

2 Q ( ~ + V , ]  m = l  - M1 
1 Bko 21 = - n s i n a  [ 3-2;-v2 , ( 2 t v )  

B i k  = [y sin 2 2  a ( p  +1) + .23 Pkm (2 ) 

ko 

Bkm 2 1  = - n s i n a  [ - l t v  p p f 2 v ) +  3-2v-v 
2 km 

m = l  - M2 

Bkm 23 = - n c o s a P  (2) 
km 

'-' p2 sin's -I- n 2 )  Pfd - ( l - v ) p s i n 2 a Q ~ ~ ]  

m = l  - M3 

k = O  - M i  

k = l - M Z  
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* 

M2 m = l  - 32 = - n c o s a  ~ ( 2 )  
Bkm km 

Bkm - 
33 - (ksp2 sin 2 a t cos  2 a) Pkm ( 2 )  

m = l  - M 3  

34 2 [3-2;-v2 (3-I-v) Bko = -ks  s i n a  [ y  Q::')] + E n  s i n a  
Qko ] 

(,m =O i 

4 8  

k = 1 - M 3  

~ 

I 
~ 

I 

+ k = O - M 4  
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